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Abstract. We apply an optimized method to the adjoint generation of a time-evolving land ice model

through algorithmic differentiation (AD). The optimization involves a special treatment of the fixed-

point iteration required to solve the nonlinear stress balance, which differs from a straightforward

application of AD software, and leads to smaller memory requirements and in some cases shorter

computation times of the adjoint. The optimization is done via implementation of the algorithm of5

Christianson [1994] for reverse accumulation of fixed-point problems, with the AD tool OpenAD.

For test problems, the optimized adjoint is shown to have farlower memory requirements, poten-

tially enabling larger problem sizes on memory-limited machines. In the case of the land ice model,

implementation of the algorithm allows further optimization by having the adjoint model solve a

sequence of linear systems with identical (as opposed to varying) matrices, greatly improving per-10

formance. The methods introduced here will be of value to other efforts applying AD tools to ice

models, particularly ones which solve a “hybrid” shallow ice / shallow shelf approximation to the

Stokes equations.

1 Introduction

In recent decades it has become clear how little we understand about the processes governing ice15

sheet behavior (Vaughan and Arthern, 2007), and the complexity that is required in numerical ice

sheet models in order to understand this behavior (Little et al., 2007;Lipscomb et al., 2009). The

representation of poorly-understood processes in ice sheet models leads to large, poorly-constrained

parameter sets, the size of which might potentially scale with the size of the numerical grid. It is

vital that there be a means to relate the outputs of an ice sheet model back to these parameters, both20

comprehensively and efficiently. However, the simplest method of sensitivity assessment – running

the model multiple times while varying each parameter in isolation – quickly becomes intractable

because of the complexity of the models. Consider, for instance, a dynamic model of the Antarctic
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Ice Sheet, which takes several days to run on a supercomputing cluster, and contains several hundred

thousand parameters pertaining to the spatially varying frictional and geothermal properties of the25

bed over which it slides. Assessing the sensitivity of the model to this parameter field by the method

described above would not be feasible.

Adjoint modelsprovide a means to assess these sensitivities in a way which is independent of the

number of parameters. The adjoint of an ice sheet model simultaneously calculates the derivatives of

a single model output (often called acost function) with respect to all model parameters – or rather,30

thegradientof the cost function with respect to the parameter set, orcontrol variables. Note that the

latter computation more naturally lends itself to scientific inquiry, as

– this single output can be one of societal interest, for instance the contribution of an ice sheet

to sea level over a given time window; and

– an investigator is unlikely to solely be interested in just one of these (potentially) several35

hundred thousand poorly-constrained parameters.

The adjoint model is essentially the linearization of the model, only the information is propagated

backward in time (or rather in reverse to computational order). As such, the original model is often

referred to as theforward model. Essentially, it is this backward-in-time propagation that allows for

simultaneous calculation of these derivatives, regardless of the dimension of the parameter set.40

One of the earliest instances of the use of the adjoint of an ice sheet flow model was that of

MacAyeal(1992), in which a control method was developed to optimallyfit a model to observed

velocities through adjustment of bed friction parameters.The ice flow model used in this study was

a depth-integrated approximation to the shear-thinning Stokes equations, appropriate to ice shelves

and weak-bedded streams (MacAyeal, 1989). Moreover, it was a “static” model, i.e. it consistedonly45

of the nonlinear stress balance governing ice velocities, and did not evolve the ice geometry or tem-

perature. The method has since been used in a number of applications (e.g.,MacAyeal et al., 1995;

Rommelaere, 1997;Vieli and Payne, 2003;Larour et al., 2005;Khazendar et al., 2007;Sergienko et al.,

2008;Joughin et al., 2009). Similar methods have been applied to “higher-order” approximations

(Pattyn et al., 2008), or to the Stokes equations themselves (e.g.,Morlighem et al., 2010;Goldberg and Sergienko,50

2011;Petra et al., 2012;Perego et al., 2014;Isaac et al., 2015).

More recently, algorithmic differentiation (AD) tools have been applied to ice sheet models for

adjoint model generation. AD tools differentiate models bydifferentiating elemental operations and

applying the chain rule. They have been applied extensivelyto atmospheric and ocean codes (Errico,

1997;Heimbach et al., 2002;Heimbach, 2008). The use of AD offers ease of differentiation of the55

model. For instance, the majority of the adjoint models mentioned in the previous paragraph ignore

the dependence of nonlinear ice viscosity on strain rates, producing an “approximate” set of adjoint

equations which have the same form as the forward model, allowing for code reuse. At the same time,

this “approximate” adjoint ignores terms in the model gradient without knowing whether they are
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negligible. While the “full” adjoint model involves equations distinct from the forward model, the use60

of AD avoids having to write the code to solve them. Another advantage is modularity. Modifying,

for example, the specific form of strain-rate dependence of viscosity in an ice sheet model would

then require invasive changes to an analytically-derived set of adjoint equations. When generating

the adjoint through AD, these changes are automatic. Furthermore, AD tools are invaluable when

dealing with time-dependent or multiphysics models, wheremodel complexity makes it very difficult65

to generate adjoint code “by hand”. In fact, to date the only time-dependent ice sheet adjoint models

have been generated through the use of AD (Heimbach and Bugnion, 2009;McGovern et al., 2013;

Goldberg and Heimbach, 2013;Larour et al., 2014).

For clarity we will draw a distinction between the partial differential equations (PDEs) that com-

prise a mathematical model of a physical system, and the computational model that discretizes these70

equations. The PDEs represent an operator, the linearization of which has an adjoint (thecontinuous

adjoint), which can be discretizedGoldberg and Sergienko(2011). Alternatively, the computational

model can be differentiated directly. We focus on thisdiscreteadjoint in this paper. As mentioned

above, a discrete adjoint model can be thought of as the reverse order computation of the original

modelGriewank and Walther(2008);Heimbach and Bugnion(2009), but an important subtlety is75

that this discrete adjoint may not necessarily correspond to the correct continuous adjoint, a subtlety

which bears on the accuracy of ice sheet adjoint models.

Most ice flow models solve a nonlinear elliptic system of partial differential equations (PDEs) for

ice velocity, and these equations require an iterative fixed-point approach. (Here “most ice flow mod-

els” is taken to meanall ice flow models, except those which make the Shallow Ice Approximation80

(SIA, Hutter (1983)). The SIA strictly applies only to slow-moving ice frozen at its base, and not the

fast-flowing ice streams at the Antarctic and Greenland margin which currently exhibit variability.)

We refer to this fixed-point iteration as the Forward Fixed Point Iteration (FFPI). Ice sheet models of

this type, to which AD tools have been applied previously, simply step backward through the FFPI

(Goldberg and Heimbach, 2013;Larour et al., 2014;Martin and Monnier, 2014). This strategy is85

sometimes referred to as themechanical adjoint(Griewank and Walther, 2008). The mechanical ad-

joint of a fixed-point solution is in fact the iterative solution of a distinct fixed-point problem, whose

convergence differs from that of the forward loop (Christianson, 1994), and to which we refer as the

Adjoint Fixed Point Iteration (AFPI ). As such the mechanical adjoint could potentially performtoo

many iterations, thereby wasting resources; or too few iterations, resulting in decreased accuracy. In90

fact, in some cases the mechanical adjoint can be inaccurateregardless, as we show in Section 4.1.

Additionally, the mechanical adjoint can lead to burdensome memory and/or recomputation loads as

discussed in Section 3.Martin and Monnier(2014) show accuracy can be maintained by truncating

the iteration in the mechanical adjoint, but do not provide arobust, situation-independent way of

doing so.95
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Christianson(1994) provides a mathematical strategy for finding the adjoint of a fixed-point prob-

lem via direct solution of a related fixed-point problem. Theconvergence of this related problem can

be directly evaluated, avoiding the problem of too many or two few iterations. A novelty of the

approach is that only information from the converged state of the forward loop is used for the ad-

joint computation, permitting additional efficiency gains. In this paper we present an application100

of the AD software OpenAD (Utke et al., 2008) to the MITgcm time-dependent glacial flow model

(Goldberg and Heimbach, 2013). A different AD tool has previously been applied to this ice model,

so here we focus on the implementation of the Christianson algorithm (henceforth calledBC94) –

an innovation which is observed to yield substantial improvements in performance.

2 Fixed-point problem105

The forward model to which AD methods are applied is that ofGoldberg(2011), which is a “hy-

brid” of two low-order approximations to the nonlinear Stokes flow equations that govern ice creep

over timescales longer than a day (Greve and Blatter, 2009). These are the Shallow Ice Approxi-

mation, appropriate for slow-flowing ice governed by vertical shear deformation, and the Shallow

Shelf Approximation (SSA;Morland (1987); MacAyeal(1989)), appropriate for fast-flowing ice110

governed by horizontal stretching and shear deformation. The hybrid equations have been shown ap-

propriate in both regimes, and represent considerable computational savings over the Blatter-Pattyn

equations (Blatter, 1995;Pattyn, 2003;Greve and Blatter, 2009), as they require the solution of a

two-dimensional system of elliptic PDEs rather than a three-dimensional one.

We do not discuss the details of the model here, as they are given in detail inGoldberg(2011)115

and inGoldberg and Heimbach(2013). Rather, we focus on its FFPI. Conceptually, the model al-

gorithm can be divided into two components: prognostic (time-dependent) and diagnostic (time-

independent). In the MITgcm land ice model, the prognostic component comprises an update to ice

vertical thickness (H) through a depth-integrated continuity equation, as well as an update of the

surface elevation and, implicitly, the portion of the modeldomain where ice is floating in the ocean120

rather than in contact with its bed. The diagnostic component solves the FFPI for ice velocities

based on the current thickness profile. Mathematically thisstep can be understood as the inversion

of a nonlinear operatorF :

F (u,a) = f . (1)

Hereu is a vector representing horizontal depth-averaged velocities u andv. F is the discretiza-125

tion of a nonlinear elliptic PDE in depth-averaged velocity. a represents the set of material pa-

rameters that determine the coefficients of the PDE: ice thickness (H), basal friction rheologi-

cal parameters (C), and ice rheological parameters (A). f is the discretization of driving stress

(Cuffey and Paterson, 2010), or the depth-integrated hydrostatic pressure gradient (which is deter-

mined by ice thickness). In this model (and in many others) the nonlinear elliptic equation is solved130
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by a sequence of solutions of linear elliptic operators, where the operators depend on the result of

the previous linear solve:

u(m+1) = (L{u(m),a})
−1f ≡ Φ(u(m), â), (2)

where, in the definition ofΦ, â represents the augmentation of the seta to includef . L is a linear

operator constructed usingu(m), the current iterate ofu, and the parameterŝa. Note thatâ will135

differ for each time step through the dependence on ice thickness, which is updated by the prognostic

component of the model. In general, the ice rheological parameters depend on ice temperature, which

is advected and diffused over time. Our ice model does not have a thermomechanical component,

but once developed, it will not affect the algorithm we present in this paper.

Eq. (2) is our FFPI mentioned previously. In practice the iteration is truncated when subsequent140

iterates agree in some predefined sense, but in theory will converge to a unique solutionu∗(â). In the

process of computing the adjoint to the ice model,∂u∗

∂â
must be found, either directly or indirectly.

The focus of this paper is an efficient, scalable method of computing this object.

3 Forward model and “mechanical adjoint”

Here we give a brief overview of how the model and its mechanical adjoint are constructed. For145

further details the reader should consultGoldberg and Heimbach(2013). Table 1 contains a high-

level pseudocode version of the ice model time stepping procedure. Superscripts denote time step

indices. First the velocity solve (CALC_DRIVING_STRESS and the following loop) finds ice veloc-

ities based on current ice thickness and material parameters; then the prognostic component updates

thickness (ADVECT_THICKNESS). The functionΦ comprises the construction of the linear sys-150

temL (including the nonlinear dependence of the matrix coefficients on the previous iterate) and its

solution.

Table 2 gives an overview of our implementation of the mechanical adjoint. Here we introduce

some notation: for a given computational variableX, theadjoint to X, which formally belongs to

the dual tangent space atX, is denotedδ∗X (e.g.Heimbach and Bugnion, 2009). The algorithm155

evolves the adjoint variables (e.g.,δ∗H) backward in time. These adjoint variables carry with them

the sensitivities of the model output to the corresponding forward variables, and the sensitivities are

eventually propagated back to the input parameters. Note that the adjoints of the individual (pseudo-)

subroutines are given and correspond to the (pseudo-) subroutines of the forward model, mirroring

the way the adjoint is actually constructed. Just like the forward model, the adjoint contains an inner160

loop – this is a specific implementation of the AFPI, which will be discussed in further detail below.

As the computation ofΦ involves the solution of a linear system of equations, the adjoint of Φ

involves the solution of the adjoint of that system. Since the matrixL{u(m),a} is self-adjoint, it is

easier to calculate this result analytically than for an AD tool to differentiate the linear solver code
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– allowing invocation of external “black box” libraries that cannot be differentiated by the tool. This165

strategy is used by other applications of AD to ice models (e.g.,Martin and Monnier, 2014).

An important point to be made is that the inner loop in Table 2 is executed as many times as

the corresponding inner loop in the forward model (lastm[n]), without any checks of convergence.

This could lead to under- or over- convergence, as stated previously. Another important aspect is

that at each reverse time step, and, importantly, at each iteration of the FFPI, the state of the forward170

model is required. In particular, every matrixL{u(m),a} must be stored (or recomputed), along with

other intermediate variables within the fixed-point loop. The storage and recovery steps are shown

explicitly in tables 1 and 2 – and can lead to burdensome memory loads depending on the number

of fixed-point iterations taken at each time step.

The mechanical adjoint of our model was first generated usingTAF (Transformation of Algo-175

rithms in Fortran;Giering et al. (2005)), but has subsequently been generated via OpenAD with

little further difficulty.

4 Fixed point treatment

Christianson(1994) presents an algorithm (BC94) for calculating the adjoint of a fixed-point prob-

lem that addresses the shortcomings given above, namely thedependence of the termination of the180

adjoint loop on that of the forward loop, and the requirementto store variables at each iteration of

the adjoint loop. Additionally it provides the opportunityfor further optimization when applied to a

higher-order ice sheet model, as discussed below.

4.1 Mathematical basis

For a rigorous mathematical analysis of BC94 the user is asked to consult the original paper. Here185

we give a brief overview of its mathematical basis. In terms of Eq. (2), consider the converged state

of the fixed point problem:

u∗ = Φ(u∗, â). (3)

Consider a total differential of this equation:

δu∗ =
∂Φ

∂u
(u∗, â)δu∗ +

∂Φ

∂â
(u∗, â)δâ. (4)190

Rearranging gives

δu∗ =

[

I −
∂Φ

∂u

]

−1
∂Φ

∂â
δâ. (5)

If the Euclidean operator norm of the square matrix∂Φ/∂u is less than unity then the above is

equivalent to

δu∗ =
(

I + ∂Φ/∂u +(∂Φ/∂u)
2
+(∂Φ/∂u)

3
+ ...

) ∂Φ

∂â
δâ. (6)195
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Note that in the above series,∂Φ/∂u is always evaluated at the converged solutionu∗. The above

condition on the norm of∂Φ/∂u will not hold in general – but since this is one of the conditions

required for convergence to a fixed point, we can expect that it will be satisfied atu∗.

From eq. (6) we obtain the desiredadjoint operator, approximated by a truncated series of length

n:200

δ∗â =

(

∂Φ

∂â

)T



I +

(

∂Φ

∂u

)T

+

(

(

∂Φ

∂u

)T
)2

+ ...+

(

(

∂Φ

∂u

)T
)n



δ∗u∗. (7)

The algorithm ofChristianson(1994) uses a fixed-point loop in order to calculate (7), the conver-

gence criterion of which determines the truncation lengthn. This loop represents an implementation

of the AFPI, distinct from the one implemented by the mechanical adjoint. In order to make this

distinction explicit, the operator in eq. (7) can be written205

n
∑

i=0

(

∂Φ

∂â

)T n
∏

k=n+1−i

(

∂Φ

∂u

)T

, (8)

where it is understood that in thei = 0 term the product sequence evaluates to the identity. It is

straightforward to check that the mechanical adjoint (cf Table 2) effectively computes the operator

n
∑

i=0

(

∂Φ(n−i)

∂â

)T n
∏

k=n+1−i

(

∂Φ(k)

∂u

)T

, (9)

where∂Φ(k)/∂u and similar terms indicate that the gradient is calculated using the variables that210

have been stored at forward iterationk, rather than at the converged solution. It is apparent that this

expression can differ from eq. (7) if some iterates are far from the fixed point, or if the gradient ofΦ

is sensitive tou. In fact, it has been observed in certain cases that a poor choice of initial iterate can

lead to inaccurate adjoint calculation. Furthermore, in the mechanical adjoint, the truncation length

depends on the number of forward iterations, which may not berelated to the convergence of this215

series. A scheme which truncates this series based on the size of the truncated terms will be more

robust.

4.2 Implementation in OpenAD

Tables 3 and 4 give an overview of our implementation of BC94 in the MITgcm ice model using

OpenAD. High-level changes to the code were necessary, but the subroutines that comprise the ac-220

tion of the operatorΦ were left unchanged. As shown in 3, rather than callingΦ directly, the loop

implementing the FFPI calls a subroutine calledPHISTAGE with an argumentphase which has

valuesPRELOOP, INLOOP, or POSTLOOP. Just before the fixed-point loopPHISTAGE is called

with PRELOOP, which does nothing (that is, nothing in forward mode). Within the loop,PHISTAGE

is called with argumentINLOOP, which essentially has the same effect as the call toΦ in the original225

ice model time stepping algorithm. After the loop is converged,PHISTAGE is called with argument
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POSTLOOP, which callsΦ one more time (which, if the iteration is converged, should have negli-

gible effect). Of key importance is that any storing of variables that takes place within the call toΦ

in theINLOOP phase isundoneat the end of each iteration, unless convergence is reached.In other

words, exactly one “iteration’s worth” of storage occurs during the time step.230

The reason for the addition of this layerPHISTAGE is rooted in the nature of OpenAD source

transformation. To implement BC94 using this tool, it was found to be simplest to replace OpenAD-

transformed code with handwritten code, which can be done atthe subroutine level usingtemplates

files. Such a template was written forPHISTAGE in order to implement the pseudocode in tables

3 and 4. The subroutine thus serves as a “layer” which does notaffect the diagnostic ice physics235

represented by the functionΦ or the prognostic physics implemented outside of the FFPI loop. Thus

the modularity offered by the AD approach is not lost.

Table 4 shows how the adjoint model is constructed, making use of the OpenAD-generated ad-

joint code forΦ. In adjoint mode, the calls toPHISTAGE happen in reverse order. The variable

w is a placeholder with no real role in the forward computation, but the adjoint of the call to240

PHISTAGE in thePOSTLOOP phase assigns toδ∗w the adjoint values of velocity resulting from

AD_ADVECT_THICKNESS. In the INLOOP phaseδ∗w is updated according to the equation:

δ∗w(m+1) = δ∗w(m)

(

∂Φ

∂u

)T

+ δ∗u (10)

wherem indicates the AFPI iteration step. (In the table, the subscript indices are left off for clarity.)

This loop iteratively constructs the truncated infinite series in eq. 7 (or rather, its action onδ∗u∗).245

Finally, the adjoint-mode call toPHISTAGE with PRELOOP represents the operation of
(

∂Φ
∂â

)T
on

the result.

The introduction of the variablew represents the bulk of the modifications that were necessaryto

implement the algorithm using OpenAD. The only additional modification is a handwritten evalua-

tion of convergence ofδ∗w: we terminate when the relative reduction in thesup-norm of the change250

in δ∗w is below a fixed tolerance. We emphasize that all of these modifications are at the level of

the “wrapper”PHISTAGE, which does not contain any representation of model physics(and hence

changes to model physics would not impact this subroutine nor its handwritten adjoint code).

4.3 Optimization of linear solve

As mentioned previously, evaluatingΦ involves the solution of a large (self-adjoint) linear system,255

and thus the adjoint ofΦ involves the solution of a linear system with the same matrix(assuming

the same values ofu andâ). In the mechanical adjoint model, within a given time step,this matrix

differs with each iteration of the adjoint loop; however, inBC94, only the right hand side differs.

This invariance suggests the use of a linear solver whose cost can be amortized over a number of

solves, such as an L-U decomposition or an algebraic multigrid preconditioner, the internal data260

structures of which only need be constructed once. In this study, we consider only an L-U solver.
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5 Test Experiment

A simple experimental setup was developed to test the accuracy, performance, and convergence

properties of the implementation of BC94. The setup consists of an advancing ice stream and shelf in

a rectangular domain(x,y) ∈ [0,80km]× [0,40km]. We prescribe an idealized bedrock topography265

R and initial thicknessh0. R does not vary in the along-flow (x−) direction and forms a channel

through which the ice flows, prescribed by

R(x,y) = −600− 300× sin
( πy

40km

)

, (11)

while initial thickness is given by

h0(x,y) =











300 m +min
(

1,
(

x−50 km
62 km

)2
)

× 1000 m 0 ≤ x < 50 km

300 m 50 km ≤ x ≤ 70 km.
(12)

270

Wherex > 70 km, there is open ocean (until the ice shelf front advances past this point). Where ice

is grounded, a linear sliding governs basal stress:

τ b = −Cu (13)

whereC = 25 Pa (a−1m). The Glen’s Law coefficient (which controls the ice stiffness) is given by

8.5× 10−18 Pa−3 a−1, corresponding to ice with a uniform temperature of∼-34◦C. At the upstream275

boundary, ice flows into the domain atx = 0 at a constant volume flux per meter width of 1.5× 106

m2/a. At y = 0 andy = 40 km no-flow conditions are applied. Velocity, thickness and grounding line

are plotted in Fig. 1(a). Further details of the equations are given inGoldberg and Heimbach(2013).

In the experiment, a cost functionJ is defined by running the model forward in time for 8 years,

and evaluating the summed square velocity at the end of the run. That is,280

J =
∑

i,j

u(i, j)2 + v(i, j)2 (14)

wherei andj indicate cell indices in thex− andy−directions, respectively, andu andv are cell-

centered surface velocities. Unless specified otherwise time step is 0.2 years and grid resolution is

2000 m, so 1≤ i ≤ 40 and 1≤ j ≤ 20. The control variable consists of basal melt ratem, defined for

each cell and considered constant over a cell and in time (andnonzero only where ice is floating),285

and set uniformly to zero in the forward run, even under floating ice. Fig. 1(b) plots the adjoint

sensitivities ofm, or alternatively∂J/∂mij , wheremij is melt rate in cell(i, j). The field shows

broad-scale patterns that are physically sensible: in the margins of the ice shelf toward its front,

thinning through basal melting will weaken the restrictiveforce on the shelf arising from tangential

stresses at the no-slip boundaries. The driving force for flow is proportional to ice shelf thickness,290

and so in the center of the shelf thinning leads to deceleration. Meanwhile, ice shelf velocities are

very insensitive to melting at the center of the ice shelf front.
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We find that the results of the mechanical adjoint and of the adjoint model implementing BC94

(which we henceforth refer to as the “fixed-point adjoint”) are almost identical, with a relative dif-

ference no larger than 10−6 over the domain (not shown). However, the adjoint sensitivities should295

also be compared against a “direct” computation of the gradient, i.e. one which does not involve the

adjoint model. In this case∂J/∂mij is approximated through finite differencing, by perturbingmij

by a finite amount and running the forward model again. This calculation is carried out for each cell

(i, j). Fig. 1(c) plotsdiscfd, given by

discfd =
δ∗mfp

ij − δ∗mcd
ij

δ∗mcd
ij

, (15)
300

whereδ∗mcd
ij is a centered-difference approximation:

δ∗mcd
ij =

1

2ǫ
(J(mij + ǫ)−J(mij − ǫ)), (16)

andJ(mij + ǫ) indicates that the meltrateat cell (i, j) only is perturbed byǫ. ǫ is set to 0.01 m/a

uniformly.

discfd is seen to become quite large, on the order of∼1% in some parts of the domain, warranting305

further examination. An implicit assumption in the discrepancy measurediscfd is that the finite

difference approximation has negligible error, which may not be the case. We can estimate where

this finite-difference error will be large: from a Taylor series expansion, and ignoring round-off error

(which we do not attempt to estimate), the error in approximating the adjoint sensitivity ofmij by

finite difference is roughly proportional to the second derivative∂2J/∂(mij)
2. As a proxy for this310

quantity we plot in Fig. 1(d) the 2nd-order difference ofJ :

∆2Jij = J(mij + ǫ)+J(mij − ǫ)− 2J (17)

Aside from the left-hand boundary, this measure appears to correlate well withdiscfd. Thus we

can at least partly attribute the pattern of discrepancy in Fig. 1(c) to errors in the finite difference

approximation. We emphasize that (17) is not an accurate measure of the second derivative – which315

is obviously not achievable through finite differencing if first-order derivatives are inaccurate – but

is simply meant to give an indication of its magnitude.

5.1 Truncation errors

The analysis ofChristianson(1994) suggests the error of the calculated adjoint dependslinearly on

both thereverse truncation errorand theforward truncation error. The reverse truncation error is the320

difference between the final and penultimate iterates in theadjoint loop, i.e. the error associated with

terminating the loop after a finite number of iterations. That is, referring to Table 4, ifm iterations

are carried out, the reverse truncation error is equal to

α‖wm −wm−1‖, (18)
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whereα is related to the gradient ofΦ at the fixed point. The norm here is thesup-norm, because325

this is the norm on which our convergence criterion is based.

While a tight bound forα will vary with each time step, it can be expected that the reverse trunca-

tion error will vary linearly with the convergence tolerance and we do not address it further. However,

we investigate the dependence on forward truncation error as follows. A sequence of adjoint model

runs is carried out with increasingly smaller tolerances for the forward fixed-point iteration loop. The330

tolerance of the reverse loop is kept at a small value (10−8). The adjoint sensitivities corresponding

to the smallest forward tolerance (10−9) are assumed to be “truth”; error is estimated by comparison

with these values. Fig. 2 plots the maximum error in the adjoint calculation over the domain against

the forward tolerance, which is a good measure of the forwardtruncation error. Within a range of for-

ward truncation error the dependence is nearly linear, although this dependence appears to become335

weaker as forward truncation error becomes smaller.

5.2 Performance

Here we evaluate the relative performance of the mechanicaland fixed-point adjoint models in terms

of both timing and memory use. The results are presented in Table 5, but we must first briefly

discuss how the OpenAD-generated adjoint computes sensitivities for a time-dependent model. As340

mentioned in the introduction, adjoint computation takes place in reverse. This presents an issue,

because at each time step in this reverse computational mode, the adjoint model requires knowledge

of the full model state at the corresponding forward model time step. In general, keeping the en-

tire trajectory (including intermediate variables) of a time-dependent model run in memory is not

tractable. Therefore efficient adjoint computation is a balance between recomputation (beginning345

from intermediate points in the run known as “checkpoints”), storage of checkpoint information on

disk, and keeping variables in memory (in data structures called “tapes”). The “store” and “restore”

commands in tables 1-4 refer to tape manipulation. For further information on adjoint computation

seeGriewank and Walther(2000) andGriewank and Walther(2008).

In our implementation this amounts to an initial forward runwith no taping (aside from the final350

time step), but writing of checkpoints to disk. This initialrun is referred to below as the “forward

sweep”. Afterwards the “reverse sweep” begins, beginning with the final time step. The reverse

sweep consists of an intial adjoint computation for the finaltimestep. As reverse computation pro-

ceeds, the model is restarted from checkpoints to recover variables used in adjoint computation. The

details of this process are important because they determine how many extra forward time steps355

(without taping) must be taken. These plain time steps set upthe computation of a subsequent time

step in “tape mode”, i.e. they write intermediate variablesto tape during computation. This is fol-

lowed immediately by a time step computation in “adjoint mode”. In the model runs we consider,

no extra plain checkpoints are required. A run of 40 time steps, then, will consist of nearly 40 time

steps in “plain mode” (no taping, but with checkpoint writing), 40 time steps in tape mode, and 40360
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time steps in adjoint mode. Even if adjoint time steps and writing to disk and to tape are negligible,

such a run will still take about twice as long as the forward model.

In Table 5 we compare run times for the forward and reverse sweeps for the mechanical and

fixed-point adjoints of our test problem, at multiple grid resolutions. We also give run times for the

“untouched” model, i.e. code which has not been transformedby OpenAD. The difference between365

this time and the forward sweep represents writing checkpoints to disk, taping in the final time step,

and any other extra steps or changes (e.g. modified variable types) caused by the transformation.

We also show the maximum length of the double tape in memory. There are different tapes for

different variable types: integer, double, logical and character. The double tape is observed to require

the most memory in our tests. However, due to storage of loop indices, the integer tape is nonnegligi-370

ble, requiring between 20% (in the largest test) to 50% (in the smallest test) of the memory required

by the double tape. The numbers reported represent an upper bound, as our system of reporting tape

lengths has a granularity of 16×(1024)2 elements.

In all cases, the forward and adjoint fixed-point tolerance thresholds are set to 10−8. As resolution

increases, stability considerations require smaller timesteps, so the number of time steps doubles375

when cell dimensions are halved. The simulations are run on Intel Xeon 2.67GHz cpus and the num-

ber of cores used is displayed. Unless otherwise specified, the Conjugate Gradient solver from the

PETSc library (http://www.mcs.anl.gov/petsc) with IL-U preconditioner is used to invert all matri-

ces.

The results show that without further optimization, the BC94 algorithm does not offer large timing380

performance gain over the mechanical adjoint. The forward sweep is slightly shorter, but the reverse

sweep is roughly the same. However, the memory load is far less, only going up to (at most) 136

MB in the high resolution run where the mechanical adjoint uses 2.76 GB. This provides a possible

explanation for the forward sweep of the mechanical adjointbeing slower: it is overhead associated

with the additional memory allocation. As even at the highest resolution this is still a modestly-385

sized problem, it is likely that certain setups of the model on certain machines would quickly reach

memory limits and either crash or beginning swapping memory, significantly affecting performance.

Substantial timing performance gains are not seen until theL-U optimization described in Sec-

tion 4.3. As discussed, this optimization is made possible by the BC94 algorithm. At the highest

resolution tested, the reverse sweep takes 40% less time, and overall the model run is 30% shorter.390

The performance gain is due to the fact that in a time step, thedirect L-U decomposition is only

done once, and subsequent linear solves are by forward- and back-substitution, which are far less

expensive operations. As indirect solvers such as Conjugate Gradients are typically faster than direct

matrix solvers, it is unclear what relative performance gain would be at even higher resolutions; but

in the three resolutions tested, relative performance improves with resolution.395

We mention that the BC94 algorithm has recently been implemented in the AD tool Tapenade,

through a different user interface that relies on directives inserted in the code rather than on the
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OpenAD templating mechanism. It has not been tested on an iceflow model but on two other CFD

codes, without our linear solver optimisation part. Their performance results are in line with ours,

with a minor run-time benefit but a major reduction of memory consumption (Taftaf et al., 2015).400

6 Realistic Experiment

In addition to idealized experiments, the fixed-point adjoint has been tested in a more realistic

setting. Smith Glacier in West Antarctica is a fast-flowing ice stream that terminates in a floating

ice shelf. In recent years, high thinning rates of Smith havebeen observed (Shepherd et al., 2002;

McMillan et al., 2014), and this is thought to be related to, or even caused by, thinning of the ad-405

jacent ice shelves by submarine melting (Shepherd et al., 2004). Here we examine this mechanism

using the fixed-point adjoint. To initialize the time-dependent model, we choose a domain and a rep-

resentation of the bedrock elevation and ice thickness in the region from BEDMAP2 (Fretwell et al.,

2013) and constrain the hidden parameters of the model (basal frictional coefficient field and depth-

averaged ice temperature) according to observed velocity using methods that have become standard410

in glaciological data assimilation (e.g.,Joughin et al., 2009;Favier et al., 2014). The observed ve-

locities come from a dataset of satellite-derived velocityover all of Antarctica (Rignot et al., 2011).

Using the bed and thickness data, and the inferred sliding and temperature fields, the model is

stepped forward for 5 years with 0.2 year time steps. The simulation is run on 24 cpus. As with our

test experiment, submarine melt rate is used as the control variable. The cost function, rather than415

being a measure of velocity, is the loss ofVolume Above Floatation(VAF) in the domain at the end

of the 5 years. VAF is essentially the volume of ice that couldcontribute to sea level change, and is

often used to assess the effects of ice shelf thinning on grounded iceDupont and Alley(2005). It is

given by

420

VAF =
∑

i

HAF(i)∆x∆y, (19)

HAF(i) =

(

h(i)+
ρw

ρ
R(i)

)+

, (20)

wherei is cell index,h is thickness,ρ and andρw are respectively ice and ocean density,R is bedrock

elevation, and the “+” superscript indicates the positive part of the number. We useρ = 918 kg/m3

andρw = 1028 kg/m3. A key aspect is that any floating ice does not contribute to VAF.425

The results are shown for the ice shelves connecting to SmithGlacier in Fig. 3, overlain on

grounded ice velocities (adjoint melt rate sensitivities are zero where ice is grounded). It is inter-

esting to note where the sensitivities are largest, along the margins of the ice shelves and also along

the boundary between the two main sections of the ice shelf. The mechanism is similar to that of

our test experiment: the margins are where shear stress is exerted, and thinning here will lessen the430
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backforce on grounded ice. The boundary between the two sections of the ice shelf likely plays a

similar role in the ice shelf force balance, as velocity shear is large in this area (not shown).

Regarding accuracy, the finite-difference approximation to the gradient cannot be found for every

ice shelf cell. However, we compared the adjoint sensitivity to the finite difference approximation at

4 arbitrary locations, and relative discrepancy was on the order of 10−5. In terms of performance,435

this is a much larger setting than even the highest resolution examined in the test problem. The

500 m cell size leads to approximately 200,000 ice-covered cells in the domain (which means the

matrices involved, which incorporate bothx− andy− velocities, have 400,000 rows and columns).

The forward sweep has a run time of 1700 seconds and the reverse sweep 2340 seconds. (Multiple

runs on the same cluster give similar timing results.) Only the fixed-point adjoint with an L-U solver440

for the adjoint loop is considered. The timing results are encouraging, indicating that the reverse

sweep timing comes closer the forward sweep timing with larger-scale simulations.

7 Discussion and conclusions

The fixed-point algorithm ofChristianson(1994) has been successfully applied to the adjoint cal-

culation of a land ice model. The algorithm is very relevant to the model code, as the bulk of the445

model’s computational cost is the solution of a nonlinear elliptic equation through fixed-point iter-

ation. As many land ice models solve a similar fixed-point problem – particularly those intended

to simulate fast-flowing outlet glaciers in Antarctica and Greenland – the methodology introduced

here has potential for the application of algorithmic differentiation techniques to other ice models.

The implementation of the algorithm replaces a small portion of AD-generated code by handwrit-450

ten code. However, this is done such that it does not interfere with the modularity offered by AD

approach, and it does not require revision as model physics change.

The algorithm offers two advantages over the more straightforward “mechanical adjoint,” i.e. the

application of AD without intervention. First, the code solves the true adjoint to the fixed point it-

eration, rather than an approximation (c.f. Eq. 9). This avoids inaccurate results arising from “bad”455

initial guesses, and ensures proper convergence of the fixed-point adjoint. Second, the memory re-

quirements do not increase with the number of adjoint iterations as they do with the mechanical

adjoint. In the case of OpenAD, the effect on timing performance is small; but for machines with

limited memory or for larger problems, the large memory loadassociated with the mechanical ad-

joint will be a serious issue.460

In the context of our ice model, the nature of the algorithm allows for further optimization, as

it replaces the sequential solve of linear systems with differing matrices to a sequence of solves

with the same matrix. Replacing the Conjugate Gradient solver of the forward model with a direct

L-U solver in the adjoint model leads to further performanceimprovement. The ratio of the reverse

sweep to forward sweep, which is roughly the ratio of the run times of adjoint and forward models,465
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decreases from 2.6 for the smallest problem considered to 1.4 for the largest. In the case where only

a single time step is taken (not discussed above), no checkpoints are necessary, and the duration of

the reverse sweep can be as little as 0.3 times the forward sweep.

It should be pointed out that some authors have implemented ice model adjoint generation with-

out any iteration within the adjoint model. Depending on theapproximation to the Stokes mo-470

mentum balance used, the adjoint stress balance can be derived directly from the equations in-

volved (Perego et al., 2014; Isaac et al., 2015). The result is a linear elliptic equation that can be

solved without iteration, but which leads to a linear systemthat is far less sparse than in the for-

ward model. Additionally, the equations must potentially be re-derived if the model physics are

changed. Moreover, not all such approximations to the Stokes balance allow such an approach. “Hy-475

brid” stress balances, which solve two-dimensional approximations to the Stokes balance and are

appropriate for both fast-sliding and slow creeping flow, are increasing in popularity due to low

computational cost but reasonable agreement with the FirstOrder approximation [e.g.Goldberg

(2011);Schoof and Hindmarsh(2010);Cornford et al.(2013);Arthern et al.(2015);W. Lipscomb,

pers. comm]. Our ice model implements such a hybrid stress balance. Differentiating such a bal-480

ance at the equation level is possible but very tedious, and leads to very complicated expressions

that depend strongly on discretization (Goldberg and Sergienko, 2011), both undesirable properties.

Thus we argue that our application of the Christianson fixed-point algorithm in our algorithmically

differentiated ice model framework represents a contribution to land ice modeling in general.
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Table 1.Pseudocode version of forward model time-stepping procedure.

FOR n = initialTimeStep TO finalTimeStep

// Constructŝa fromH [n] :

CALL CALC_DRIVING_STRESS(H [n])

m = 0

REPEAT UNTIL CONVERGENCE OF u

u = Φ(u, â)

m = m+1

store L, u and other variables

lastm[n] = m

// FindsH [n+1] from continuity equation withu:

CALL ADVECT_THICKNESS()

Table 2.Pseudocode version of mechanical adjoint.

FOR n = finalTimeStep DOWNTO initialTimeStep

// Constructsδ∗H [n] andδ∗u[n] from δ∗H [n+1]

// via the adjoint of the continuity equation :

CALL AD_ADVECT_THICKNESS()

REPEAT lastm[n] TIMES

restore L, u and other variables

δ∗â = δ∗â + δ∗u
`

∂Φ
∂â

´T

δ∗u = δ∗u
`

∂Φ
∂u

´T

// Updatesδ∗H [n] from δ∗â :

CALL AD_CALC_DRIVING_STRESS(δ∗H [n])
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Table 3.Pseudocode version of modified forward model for BC94.

FOR n = initialTimeStep TO finalTimeStep

// Constructŝa fromH [n] :

CALL CALC_DRIVING_STRESS(H [n])

u = initial guess

CALL PHISTAGE(PRELOOP, w, u, â)

REPEAT UNTIL CONVERGENCE OF u

CALL PHISTAGE(INLOOP, w, u, â)

CALL PHISTAGE(POSTLOOP, w, u, â)

// FindsH [n+1] from continuity equation withu:
CALL ADVECT_THICKNESS()

SUBROUTINE PHISTAGE(phase, w, u, â)

IF (phase==PRELOOP)

// do nothing

ELSE IF (phase==INLOOP)

save tape pointer

u = Φ(u, â)

// Makes sure no storage is done :
restore tape pointer

ELSE IF (phase==POSTLOOP)

u = Φ(u, â)

store L, u and other variables
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Table 4.Pseudocode version of fixed-point (BC94) adjoint.

FOR n = finalTimeStep DOWNTO initialTimeStep

// Constructsδ∗H [n] andδ∗u from δ∗H [n+1]

// via the adjoint of the continuity equation :
CALL AD_ADVECT_THICKNESS()

CALL AD_PHISTAGE(POSTLOOP, δ∗w, δ∗u, δ∗â)

REPEAT UNTIL CONVERGENCE OF δ∗w

CALL AD_PHISTAGE(INLOOP, δ∗w, δ∗u, δ∗â)

CALL AD_PHISTAGE(PRELOOP, δ∗w, δ∗u, δ∗â)

δ∗u = 0.0

// Updatesδ∗H [n] from δ∗â :
CALL AD_CALC_DRIVING_STRESS(δ∗H [n])

SUBROUTINE AD_PHISTAGE(phase, δ∗w, δ∗u, δ∗â)

IF (phase==POSTLOOP)

δ∗w = δ∗u

ELSE IF (phase==INLOOP)

save tape pointer

restore L, u and other variables

δ∗w = δ∗w
`

∂Φ
∂u

´T
+ δ∗u

// Makes sure converged state is reused :
restore tape pointer

ELSE IF (phase==PRELOOP)

δ∗â = δ∗w
`

∂Φ
∂â

´T
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Figure 1. (a) Surface speed (shading) in the test experiment. The flow direction isfrom right to left, and the

white portion of the figure is where the ice shelf has not advanced to the endof the domain. Black contours

give thickness spaced every 200 m and the white contour is the groundingline. (b) Adjoint sensitivities of ice

speed to basal melt rates. (c) (log) relative discrepancy between adjoint sensitivities and the gradient calculated

via finite differencing. (d) 2nd order differencing of cost functionJ .
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Figure 2. Maximum error in fixed-point adjoint calculation versus tolerance of forward loop. The red line

indicates linear dependence.

Table 5. Timing performance and memory usage of mechanical and fixed-point adjoints. “dbl tape” indicates

the length of the double tape.

grid size
plain

(untouched)
mechanical adjoint BC94 algorithm

BC94 algorithm

with L-U

optimization

total 9.4 s total 38.9 s total 37.2 s total 30.4 s

forward 12.2 s forward 11.7 s forward 11.7 s

reverse 25.9 s reverse 25.1 s reverse 18.3 s

40x20

(40 timesteps,

1 cpu) dbl tape 264MB int tape 8MB int tape 8MB

total 110 s total 434 s total 425 s total 321 s

forward 134 s forward 125 s forward 126 s

reverse 300 s reverse 300 s reverse 195 s

80x40

(80 timesteps,

1 cpu) dbl tape 1.38GB int tape 136MB int tape 136MB

total 882 s total 3276 s total 3204 s total 2306 s

forward 971 s forward 886 s forward 886 s

reverse 2297 s reverse 2304 s reverse 1417 s

160x80

(160 timesteps,

4 cpus) dbl tape 2.76GB int tape 136MB int tape 136MB
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Figure 3. Adjoint sensitivity of loss of Volume above Floatation (VAF) to basal melting under the ice shelves

adjacent to Smith Glacier (location shown in inset). Filled contours give modeled ice velocity where ice is

grounded; red-white shading gives adjoint melt rate sensitivity under ice shelves. The thick black contour de-

notes the boundary of the ice shelves.
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